加载中...

20 December 2012

Localize Your Promotional Graphics on Google Play

Posted by Ellie Powers, Product Manager on the Google Play team

Google Play is your way to reach millions and millions of Android users around the world. In fact, since the start of 2011, the number of countries where you can sell apps has increased from 30 to over 130 — including most recently, the launch of paid app support in Israel, Mexico, the Czech Republic, Poland, Brazil and Russia, and fully two-thirds of revenue for apps on Google Play comes from outside of the United States.

To help you capitalize on this growing international audience, it’s now even easier to market your apps to users around the world, by adding images and a video URL to your Google Play store listing for each of Google Play’s 49 languages, just as you’ve been able to add localized text.

A localized feature graphic can show translated text or add local flavor to your app — for example, changing its theme to reflect local holidays. Always make sure that your feature graphic works at different sizes.

Once you’ve localized your app, you’ll want to make sure users in all languages can understand what your app does and how it can benefit them. Review the graphics guidelines and get started with localized graphics.

Localized screenshots make it clear to the user that they’ll be able to use your app in their language. As you’re adding localized screenshots, remember that a lot of people will be getting new tablets for the holidays, and loading up with new apps, so you’ll want to include localized tablet screenshots to show off your tablet layouts.

With localized videos, you can now include a language-appropriate voiceover and text, and of course show the app running in the user’s language.

Ready to add localized images and videos to your store listing? To add localized graphics and video to your apps, you need to use the Google Play Developer Console preview — once you add localized graphics, you won’t be able to edit the app using the old version anymore. Those of you who use APK Expansion Files will now want to try the new Developer Console because it now includes this feature. We’ll be adding support for Multiple APK very soon. Once you’ve saved your application in the new Developer Console, automated translations become available to users on the web and devices — with no work from you.

What are you doing to help your app reach a global audience?

11 December 2012

The 2012 Android Developer Survey

The Android Developer Relations team is passionate about making Android app development a great experience, so we're asking all of you involved in building Android apps -- from engineers, to product managers, and distribution and support folks -- to let us know what you think.


We want to better understand the challenges you face when planning, designing, writing, and distributing your Android apps, so we've put together a brief (10-15min) survey that will help us test our assumptions and allow us to create better tools and resources for you.

We've had a great response from thousands of Android developers who have already responded - thank you! If you haven't yet filled in the survey, you can find it here: 2012 Android Developer Survey.

We'll be closing this year's survey this Sunday (December 17th) at 12pm Pacific Time, so be sure to get your responses in before then.

To keep the survey short and simple, there are no sections for general comments. That's because we want to hear your thoughts, questions, suggestions, and complaints all year. If there's anything you'd like to share with us, you can let us know by posting to us (publicly or privately) on Google+ at +Android Developers or using the hash tag #AndroidDev.

We can't always respond, but we're paying close attention to everything you have to say.

As always, we're looking forward to hearing your thoughts!

10 December 2012

In-App Billing Version 3

Posted by Posted by Bruno Oliveira of the Android Developer Relations Team

In-app Billing has come a long way since it was first announced on Google Play (then Android Market). One year and a half later, the vast majority of top-grossing apps on Google Play use In-app Billing and thousands of developers monetize apps through try-and-buy, virtual goods, as well as subscriptions.

In-app Billing is expanding again today, making it even more powerful and flexible so you can continue to build successful applications. Version 3 introduces the following new features:
  • An improved design that makes applications simpler to write, debug and maintain. Integrations that previously required several hundred lines of code can now be implemented in as few as 50.
  • More robust architecture resulting in fewer lost transactions.
  • Local caching for faster API calls.
  • Long-anticipated functionality such as the ability to consume managed purchases and query for product information.

In-app Billing version 3 is available to any application that uses in-app items (support for subscriptions is coming shortly). It is supported by Android 2.2+ devices running the latest version of the Google Play store (over 90% of active devices).

Instead of the four different application components required by the asynchronous structure of the previous release, the new version of the API allows developers to make synchronous requests and handle responses directly from within a single Activity, all of which are accomplished with just a few lines of code. The reduced implementation cost makes this a great opportunity for developers who are implementing new in-app billing solutions.

Easier to Implement


In contrast to the earlier model of asynchronous notification through a background service, the new API is now synchronous and reports the result of a purchase immediately to the application. This eliminates the necessity to integrate the handling of asynchronous purchase results into the application's lifecycle, which significantly simplifies the code that a developer must write in order to sell an in-app item.

To launch a purchase, simply obtain a buy Intent from the API and start it:

Bundle bundle = mService.getBuyIntent(3, "com.example.myapp",
    MY_SKU, ITEM_TYPE_INAPP, developerPayload);

PendingIntent pendingIntent = bundle.getParcelable(RESPONSE_BUY_INTENT);
if (bundle.getInt(RESPONSE_CODE) == BILLING_RESPONSE_RESULT_OK) {
    // Start purchase flow (this brings up the Google Play UI).
    // Result will be delivered through onActivityResult().
    startIntentSenderForResult(pendingIntent, RC_BUY, new Intent(),
        Integer.valueOf(0), Integer.valueOf(0), Integer.valueOf(0));
}

Then, handle the purchase result that's delivered to your Activity's onActivityResult() method:

public void onActivityResult(int requestCode, int resultCode, Intent data) {
    if (requestCode == RC_BUY) {
        int responseCode = data.getIntExtra(RESPONSE_CODE);
        String purchaseData = data.getStringExtra(RESPONSE_INAPP_PURCHASE_DATA);
        String signature = data.getStringExtra(RESPONSE_INAPP_SIGNATURE);

        // handle purchase here (for a permanent item like a premium upgrade,
        // this means dispensing the benefits of the upgrade; for a consumable
        // item like "X gold coins", typically the application would initiate
        // consumption of the purchase here)
    }
}

Also, differently from the previous version, all purchases are now managed by Google Play, which means the ownership of a given item can be queried at any time. To implement the same mechanics as unmanaged items, applications can consume the item immediately upon purchase and provision the benefits of the item upon successful consumption.

Local Caching


The API leverages a new feature of the Google Play store application which caches In-app Billing information locally on the device, making it readily available to applications. With this feature, many API calls will be serviced through cache lookups instead of a network connection to Google Play, which significantly speeds up the API's response time. For example, an application could query the owned items using this call:

Bundle bundle = mService.getPurchases(3, mContext.getPackageName(), ITEM_TYPE_INAPP);
if (bundle.getInt(RESPONSE_CODE) == BILLING_RESPONSE_RESULT_OK) {
    ArrayList mySkus, myPurchases, mySignatures;
    mySkus = bundle.getStringArrayList(RESPONSE_INAPP_ITEM_LIST);
    myPurchases = bundle.getStringArrayList(RESPONSE_INAPP_PURCHASE_DATA_LIST);
    mySignatures = bundle.getStringArrayList(RESPONSE_INAPP_PURCHASE_SIGNATURE_LIST);

    // handle items here
}

Querying for owned items was an expensive server call in previous versions of the API, so developers were discouraged from doing so frequently. However, since the new version implements local caching, applications can now make this query every time they start running, and as often as necessary thereafter.

Product Information


The API also introduces a long-anticipated feature: the ability to query in-app product information directly from Google Play. Developers can now programmatically obtain an item's title, description and price. No currency conversion or formatting is necessary: prices are reported in the user's currency and formatted according to their locale:

Bundle bundle = mService.getSkuDetails(3, "com.example.myapp", 
        ITEM_TYPE_INAPP, skus); // skus is a Bundle with the list of SKUs to query
if (bundle.getInt(RESPONSE_CODE) == BILLING_RESPONSE_RESULT_OK) {
    List detailsList = bundle.getStringArrayList(RESPONSE_SKU_DETAILS_LIST);
    for (String details : detailsList) {
        // details is a JSON string with 
        // SKU details (title, description, price, ...)
    }
}

This means that, for example, developers can update prices in Developer Console and then use this API call to show the updated prices in the application (such as for a special promotion or sale) with no need to update the application's code to change the prices displayed to the user.

Sample Application


In addition to the API, we are releasing a new sample application that illustrates how to implement In-app Billing. It also contains helper classes that implement commonly-written boilerplate code such as marshalling and unmarshalling data structures from JSON strings and Bundles, signature verification, as well as utilities that automatically manage background work in order to allow developers to call the API directly from the UI thread of their application. We highly recommend that developers who are new to In-app Billing leverage the code in this sample, as it further simplifies the process of implemention. The sample application is available for download through the Android SDK Manager.

App-Specific Keys


Along with the other changes introduced with In-app Billing Version 3, we have also improved the way Licensing and In-app Billing keys are managed. Keys are now set on a per-app basis, instead of a per-developer basis and are available on the “Services & APIs” page for each application on Google Play Developer Console preview. Your existing applications will continue to work with their current keys.

Get Started!


To implement In-app Billing in your application using the new API, start with the updated In-App Billing documentation and take the Selling In-App Products training class. To use In-App Billing Version 3, you’ll need to use the new Google Play Developer Console preview.

03 December 2012

New Google Maps Android API now part of Google Play services

Posted by Reto Meier, Evan Rapoport, and Andrew Foster

Google Play services is our new platform that offers you better integration with Google products, and which provides greater agility for quickly rolling out new capabilities for you to use within your apps. Today we’re launching Google Play services v2.0, which includes two new APIs, including perhaps our most frequently requested upgrade: Maps.

Google Maps Android API


The new version of the API allows developers to bring many of the recent features of Google Maps for Android to your Android apps. We’re excited to make this API available as part of Google Play services supporting devices from Froyo onwards (API level 8+).

The new API uses vector-based maps that support 2D and 3D views, and allow users to tilt and rotate the map with simple gestures. Along with the layers you’ve come to know from Google Maps such as satellite, hybrid, terrain and traffic, the new API lets you include indoor maps for many major airports and shopping centers in your app.

One of most common feature requests we’ve heard on Android is support for Map Fragments. With this new API, adding a map to your Activity is as simple as:

<fragment
  android:id="@+id/map"
  android:layout_width="match_parent"
  android:layout_height="match_parent"
  class="com.google.android.gms.maps.MapFragment" />

Check out this image from updated Trulia Android app (which goes live tomorrow), that users can use to search for a place to buy or rent in 3D.


The new API is simpler to use, so that creating markers and info windows is easy. Polylines, Polygons, Ground Overlays and Tile Overlays can all now be added to the map with just a few lines of code.

To get started follow the getting started instructions to obtain an API Key. Then download and configure the Google Play services SDK using the SDK Manager. Check the Google Maps for Android API documentation for more details. If you haven't got it already, you'll need to download the Android SDK first.

More than 800,000 sites around the world already use our mapping APIs to create amazing and useful apps. We hope you enjoy using this new addition to the Google Maps API family, and building mapping experiences that were never before possible on a mobile device.

Photo Sphere


In Android 4.2, we introduced Photo Sphere mode in the Camera, which you can use to create amazing, immersive panoramas just like you see in Street View on Google Maps. Today we’re excited to announce new APIs and documentation that empower developers, businesses, and photographers to explore new uses of Photo Sphere for work and for play.

We’ve made Photo Sphere an open format so anyone can create and view them on the web or on mobile devices.

A Photo sphere is simply an image file (like a JPG) that has in it text-based metadata, an open format created by Adobe called XMP. The metadata describes the Photo Sphere’s dimensions and how it should be rendered within the interactive Photo Sphere viewer you see in Android, Google+, and Google Maps.

If you’d like to programmatically or manually add the XMP metadata into panoramic images not created by the Photo Sphere camera in Android, stay tuned today for more details on the metadata and how to apply it to your photos programmatically later.

In the new Google Play services, we’ve added APIs to give you the ability to check whether an image is a Photo Sphere and then open it up in the Photo Sphere viewer.

// This listener will be called with information about the given panorama.
OnPanoramaInfoLoadedListener infoLoadedListener =
  new OnPanoramaInfoLoadedListener() {
    @Override
    public void onPanoramaInfoLoaded(ConnectionResult result,
                                     Intent viewerIntent) {
        if (result.isSuccess()) {
            // If the intent is not null, the image can be shown as a
            // panorama.
            if (viewerIntent != null) {
                // Use the given intent to start the panorama viewer.
                startActivity(viewerIntent);
            }
        }
        
        // If viewerIntent is null, the image is not a viewable panorama.
    }
};

// Create client instance and connect to it.
PanoramaClient client = ...
...

// Once connected to the client, initiate the asynchronous check on whether
// the image is a viewable panorama.
client.loadPanoramaInfo(infoLoadedListener, panoramaUri);

To learn more about Google Play services and the APIs available to you through it, visit the new Google Services area of the Android Developers site.

26 November 2012

Designing for Tablets? We’re Here to Help!

Posted by Roman Nurik, who often writes about Android design-related topics on Google+

So you’ve got a great Android phone app on Google Play, your users love it, and you’re kicking back and watching the download numbers soar. Congrats! But like any enterprising developer, you may be thinking, “how do I take my app’s success even further?” The answer: an equally awesome experience on tablets. Users love their tablet apps! For example, Mint.com found that the larger screen real estate allowed tablet users to engage with their budget data 7x more than on phones. And TinyCo found that on average, paying users spent 35% more on tablets than on handsets. So now is the right time to think about how your app translates onto these larger screen devices that are designed to meet users’ more generic, everyday computing needs.

In this post, we’ll recap some of the resources available for crafting a great tablet experience for your users. These resources are useful for everyone in the app development pipeline—from product managers, to designers, to developers, and QA engineers.

Android Design Guidelines

No conversation about Android app design or development should go very far without first consulting the Android Design guidelines. While most of the sections are relevant to all Android devices, certain sections stand out as particularly relevant to design on tablets.

The Devices and Displays page introduces the concept of density-independence. For example, although the Nexus 4, Nexus 7, and Motorola XOOM all have a similar pixel resolution (1280x768, 1280x800, and 1280x800 respectively), they have vastly different screens. Instead of thinking in pixels, think in dips (density-independent pixels)—that way, it’s much easier to conceptualize the difference between Nexus 4 (640x384 dp), Nexus 7 (960x600dp), and Nexus 10 or the Motorola XOOM (1280x800 dp).

Following the 48dp rhythm discussed in Metrics and Grids helps take some of the guesswork out of sizing elements, especially for tablets. When in doubt, use multiples of 48dp (or 16dp for a finer grid) for sizing elements horizontally and vertically. For example, when showing sparse content on larger screens, consider using generous side margins of 96dp or 144dp. Or when deciding how wide your master pane should be in a master/detail layout for 10” tablets, see how your master content looks and feels with a width of 240dp or 288dp.

The Multi-pane Layouts guide discusses use cases and examples for combining related views into a single screen to simultaneously improve app navigation and make optimal use of the available screen real estate. It also discusses strategies for laying out content across both portrait and landscape, all while maintaining functional parity across orientations. Since users enjoy using tablets in both portrait and landscape orientations, it’s even more important to react properly to orientation changes than with phones.

Lastly, the Downloadable Stencils offer designers a great starting point for high-fidelity mockups, complete with reference device outlines, correctly sized action bars, and more.

Android Training for Developers

The Training section of the developer site offers task-oriented technical training material, complete with flow diagrams, code snippets, sample projects and more. Several of these ‘classes’ are geared toward helping developers understand how to scale your apps across any screen size.

The Designing Effective Navigation class—aimed more at the initial design phase of the app creation process—offers a methodology for effectively planning and grouping screens on tablets, and even shows example wireframes for a simple news reader application following this methodology.

The classes Building a Dynamic UI with Fragments and Designing for Multiple Screens demonstrate how to use fragments in conjunction with Android’s resources framework. They show how to easily choose between tablet and handset layouts at runtime while maximizing code reuse and minimizing your application size using resource aliases. They also demonstrate techniques for adapting UI flows based on the current layout.

Lastly, while not precisely a training class, the Supporting Tablets and Handsets document offers even more information about some of these key best practices. And if you’re the type of developer that would prefer to skip the text and jump right into the code, you can even add a Master/Detail flow, complete with handset and tablet support, to your app with just a few clicks using the Android Developer Tools for Eclipse.

Android Design in Action Highlights

Each week, a few of us on the developer relations team get together on the Android Design in Action live show to discuss Android design best practices, as well as provide original ‘redesign’ mockups to help demonstrate our vision of how Android apps should look and feel.

A recent episode focused on the topic of responsive design, or designing flexible apps that can adapt to whatever screen size or form factor they’re run on:

In the episode, we celebrated successful examples of responsive design on Android, ranging from creating calendar events in Google Calendar, to browsing wallpapers and stories in Pattrn and Pocket, to playing video in TED, and finally to managing your conference schedule in the open-source Google I/O 2012 app.

We also regularly feature tablet design concepts on the show (some are shown below), so we highly recommend tuning in each week for design ideas.

 

For even more tablet app inspiration, check out a few of these apps: Expedia Hotels & Flights, Pulse News, SeriesGuide, Tasks and Timer.

The Tablet Quality Checklist

Over in the “Distribute” section of developer.android.com, the recently published Tablet App Quality checklist is a great way to check if your app is tablet-ready along a variety of technical dimensions. You should make sure that everyone involved in your mobile products is aware of  the standards defined in this checklist, as it is one of the ways in which the Google Play team selects apps to feature in the Staff Picks for Tablets collection.

So What are You Waiting For?

2013 is almost here, and it’s looking to be another exciting year for Android tablets. Make sure your app is positioned to succeed in the evolving device landscape by following some of the best practices and examples discussed here and on the rest of developer.android.com.

If you have specific questions about your app, let us know on Google+ (+Android Developers) or Twitter (@AndroidDev)!

14 November 2012

Android SDK Tools, Revision 21

Posted by Xavier Ducrohet, Android SDK Tech Lead, and Angana Ghosh, Product Manager in Android

Along with the Android 4.2 SDK, we also launched a brand new update of the Android SDK Tools (Revision 21). The update includes new tools and capabilities that can help you work more efficiently as you create applications. Tools such as a new multi-config editor, and new Lint rules will help you develop apps more quickly, while a new UI test framework will give you more ways automate testing and QA for your apps. For new developers, one-click SDK download and new app templates help you get started more quickly.

Multi-config editor

A new multi-configuration editor allows you to develop and prototype your UI across various orientations, screen sizes and locales. For example, while editing your layout in portrait mode, you can see if your edits aren't visible in the shorter landscape orientation. You can see previews for other screen sizes from small phones to large tablets, you can see previews for the layout using all the available language translations in your app, and so on. You can even see how the layout appears when it is included as a fragment in a different larger layout. Finally, Android allows you to create specialized layouts for any of these configurations, and the multi configuration editor shows you these overridden layouts.

Here is a screenshot of the layout editor showing one of the layouts from the Google I/O application, across a variety of screen sizes.


More app templates

Tools R21 brings three new app templates to help you to easily add new screens to your app. There’s a new full-screen activity for use as a photo or video viewer, a settings activity to handle basic user preferences and a login activity to capture username/password.


UI Automator Test Framework

One common approach to UI testing is to run tests manually and verify that the app is behaving as expected. UI Automator is a new software testing framework available in Tools R21 that provides you with tools to easily automate UI testing tasks. It provides a GUI tool to scan and analyze the UI components of an Android application (uiautomatorviewer), a library containing APIs to create customized functional UI tests, and an execution engine to automate and run the tests against multiple physical devices. UI Automator runs on Android 4.1 (API level 16) or higher. To learn more head over to the UI Testing documentation.

One-click SDK installer

New Android SDK developers now have a convenient way to download all the various SDK components like Tools, Platform Tools, Eclipse ADT, and the latest system image with a single click. Existing developers can continue to manage their SDK components and get updates through the SDK Manager.

Revamped AVD creation dialog

The new dialog makes it easier to create Android Virtual Devices (AVDs) matching real device profiles. The AVDs will also appear in the layout editor to show you how the layouts will look.


More Lint rules

And to wrap things up there are 25 new lint rules which catch several common sources of bugs, for example deviations from Android design guide for icons, checks for mismanaged wakelocks, common sources of locale-related bugs and so on. So make sure you upgrade and let Lint loose on your projects before your next app update!

A minor bug-fix to the Android NDK is also available. For a complete list of what’s new, see the release notes for SDK Tools R21, ADT 21.0.0 and Android NDK R8c.

13 November 2012

Introducing Android 4.2, A New and Improved Jelly Bean

Posted by Angana Ghosh, Product Manager in Android, and Dirk Dougherty, Android Developer Relations Team

Today we are making Android 4.2 (Jelly Bean) SDK platform available for download. Below are some of the highlights of Android 4.2, API level 17.

Performance

We've worked with our partners to run Renderscript computation directly in the GPU on the Nexus 10, a first for any mobile computation platform.

New ways to engage users

Users can now place interactive lock screen widgets directly on their device lock screens, for instant access to favorite apps and content. With just a small update, you can adapt any app widget to run on the lock screen. Daydream is an interactive screensaver mode that users can encounter when their devices are charging or docked in a desk dock. You can create interactive daydreams that users display in this mode, and they can include any type of content.

New interaction and entertainment experiences

Android 4.2 introduces platform support for external displays that goes beyond mirroring. Your apps can now target unique content to any number of displays attached to an Android device.

Enhancements for international users

To help you create better apps for users in languages such as Arabic, Hebrew, and Persian, Android 4.2 includes native RTL support, including layout mirroring. With native RTL support, you can deliver the same great app experience to all of your users with minimal extra work. Android 4.2 also includes a variety of font and character optimizations for Korean, Japanese, Indic, Thai, Arabic and Hebrew writing systems.

To get started developing and testing, download the Android 4.2 Platform from the Android SDK Manager. For a complete overview of what's new, take a look at the Android 4.2 platform highlights or read more of the details in the API overview.